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Rainfall anomalies have long occupied center stage in policy
discussions, and understanding their impacts on agricultural pro-
duction has become more important as climate change intensifies.
However, the global scale of rainfall-induced productivity shocks
on changes in cropland is yet to be quantified. Here we identify
how rainfall anomalies impact observed patterns of cropped areas
at a global scale by leveraging locally determined unexpected var-
iations in rainfall. Employing disaggregated panel data at the grid
level, we find that repeated dry anomalies lead to an increase in
cropland expansion in developing countries. No discernible effects
are detected from repeated wet events. That these effects are
confined to developing countries, which are often dominated by
small-holder farmers, implies that they may be in response to re-
duced yields. The estimates suggest that overall, in developing
countries, dry anomalies account for ∼9% of the rate of cropland
expansion over the past two decades. We perform several tests to
check for consistency and robustness of this relationship. First,
using forest cover as an alternative measure, we find comparable
reductions in forest cover in the same regions where cropland
expands due to repeated dry anomalies. Second, we test the re-
lationship in regions where yields are buffered from rainfall anom-
alies by irrigation infrastructure and find that the impact on
cropland expansion is mitigated, providing further support for
our results. Since cropland expansion is a significant driver of de-
forestation, these results have important implications for forest
loss and environmental services.

rainfall variability | agricultural expansion | land use change |
deforestation | dams

The variability of rainfall (i.e., anomalies), defined as devia-
tions of annual rainfall from long-run averages, is an old and

recurring challenge (1, 2) that threatens agricultural systems (3)
and disproportionately impacts the developing world (4). Many
of the world’s poorest countries which have a disproportionately
high dependence on agricultural employment, rapidly expanding
populations, and elevated levels of water stress also endure
strong variability of rainfall (4). Since the middle of the 20th
century, anthropogenic climate forcing has doubled the joint
probability of years that are both warm and dry in the same lo-
cation (5) with tropics and subtropics facing more record-
breaking dry events (6). While the effects of rainfall variability
on crop yields and productivity have been widely studied (3, 4,
7–11), the consequences on changes in cropland area and by
extension deforestation are less well understood (3, 12) and are
yet to be quantified at a global disaggregated scale.
We study this relationship using data at the 0.5° grid cell level

(∼55 km at the equator), for 171 countries from 1992 to 2015.
Over this time period, there is extensive variation in rainfall over
time and space. Defining a rainfall anomaly as a variation in
precipitation that is at least 1 SD from the mean, SI Appendix,
Table S1, shows the distribution of these anomalies. With the
exception of large deserts like the Sahara and Gobi, nearly all
areas of the world has experienced rainfall anomalies.
We find that repeated dry anomalies increase cropland ex-

pansion specifically in developing countries, which are charac-
teristically dominated by small-holder farming, implying that

cropland is expanded to compensate for lower yields. Two tests
corroborate the results. First, comparable reductions in forest
cover due to repeated dry anomalies are found in the same re-
gions where cropland expands. Second, in places where in-
frastructure buffers yields from rainfall anomalies, cropland
expansion halts. Finally, we conduct a two-stage analysis to di-
rectly discern the impact of rainfall-induced productivity shocks
on cropland expansion. We find that when rainfall anomalies
reduce agricultural productivity, we observe a resulting increase
in cropland expansion, with 1- to 2- and 3-y lags.
Prior studies have shown that land conversion for agriculture

remains a significant driver of deforestation (13–19). Over the
past decade, the world has lost 2.3 million km2 of forested land
(20) with a substantial portion of this loss attributed to the ever-
expanding agricultural frontier (18). Land under cultivation is
expected to continue to increase well into the future to feed
growing populations (21). As a consequence, land clearing has
emerged as one of the major contributors to climate change and
is believed to be responsible for about 6 to 17% of anthropogenic
CO2 emissions (22). Given the scale of deforestation, improving
understanding of the relationship between rainfall variability and
cropland expansion remains critical to developing adaptation re-
sponses that protect natural habitats, limit greenhouse gas emis-
sions from land use change, and meet the growing demand for
food. Here we provide global-scale evidence about the conse-
quences of repeated rainfall anomalies on cropland expansion and
deforestation using geographically and temporally disaggregated
data.

Significance

Rainfall anomalies are known to have deleterious impacts on
agricultural yields, but the resulting consequences on cropland
expansion remain uncertain. We study the differential scale of
these impacts around the world. We find that repeated dry
anomalies increase cropland expansion specifically in de-
veloping countries, which are characteristically dominated by
small-holder farming, implying that cropland is expanded to
compensate for lower yields. Two tests corroborate the results.
First, comparable reductions in forest cover due to repeated
dry anomalies are found in the same regions where cropland
expands. Second, in places where infrastructure buffers yields
from rainfall anomalies, cropland expansion halts. Un-
derstanding the synchronous challenges facing agriculture and
the environment will be critical to inform appropriate policy
interventions.
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Knowledge of how changes in agricultural productivity impact
cropland expansion remains contested and uncertain (23–32).
On one hand, factors that increase the profitability of agriculture
and in particular the returns to investments from expansion
(extensification) could induce greater land clearing in equilib-
rium (27–29). Such an outcome would be consistent with con-
ventional economic theories based upon risk averse behavior
(33). Conversely, it has been argued that higher yields, or greater
profitability per unit of land, allow for the same amount of in-
come to be obtained from a smaller area. By this line of rea-
soning, productivity and profitability increases are necessary to
curb cropland expansion incentives. Variants of this argument
have been termed the subsistence hypothesis (29). A related
corollary is that increases in crop yield ought to reduce cropland
expansion, referred to as the Borlaug hypothesis (29).
Like the economic theories, the empirical evidence remains

mixed and ambiguous. Empirical tests using cross-country dif-
ferences have found little evidence that increases in agricultural
productivity lead to falls in cropped area, as conventional theo-
ries based on models of risk aversion would predict (30, 31). In
contrast, evidence from general equilibrium modeling studies
(32) and other microeconomic studies has found suggestive ev-
idence for the reverse (23, 24). These complex relationships ul-
timately depend on local constraints such as the availability of
land and factors that influence the profitability of expansion
(29). This study does not attempt to test these hypotheses di-
rectly but is related to this empirical literature in so far as it seeks
to determine whether exogenous (rainfall-induced) shocks to
agricultural productivity curb or enhance incentives to expand
cropland.
For our empirical exercise, we construct a panel dataset from

geographically and temporally disaggregated weather, agricul-
tural, and land use data, disaggregated at the level of a 0.5° grid
cell (Materials and Methods). Using disaggregated data is critical
since rainfall tends to exhibit significant spatial variability that is
considerably higher than that of temperature. Globally, the

within-country coefficient of variation is 1.9 times as large for
precipitation as it is for temperature in the year 2000 (0.055 for
precipitation versus 0.029 for temperature). Aggregated levels of
precipitation would therefore mask the considerable spatial
heterogeneity causing important statistical distortions that can
have direct impacts on the results.
The empirical challenge is to isolate the impact of rainfall

variations from other factors, which it could be correlated with.
For instance, it is plausible that better levels of rainfall attract
more migrants, which in turn induce agglomeration effects. In
this case, correlations between rainfall and economic outcomes
would be conflated and biased upward reflecting the conse-
quences of features such as agglomeration, rather than the
weather. To address these problems we focus on exogenous and
unexpected variations in rainfall, combined with a rich set of
fixed effects, which allows us to disentangle and causally identify
the effects of rainfall from other confounding factors. Specifi-
cally, we examine the consequences of plausibly exogenous de-
viations of rainfall from its long-run mean in each grid cell
(Materials and Methods). Thus, a grid cell observation in a year of
normal rainfall acts as a control for the same grid cell observed in
a year of a deviation or an anomaly, while year fixed effects and
other controls account for differences in the grid cell from
one year to the next, which might impact cropland expansion.
Much like the standardized precipitation index, we define
anomalies as deviations from the long-run average by using the z
score. Dry anomalies are defined as z scores below −1, and wet
anomalies are defined as z scores above +1.
We investigate how these locally determined exogenous and

unexpected variations in rainfall impact observed patterns of
cropland expansion as well as agricultural productivity (mea-
sured by net primary productivity). By examining the outcomes
of interest directly—a physical measure of yields on the intensive
margin and changes in cropped area on the extensive margin—
we avoid relying on assumptions about mechanisms that might
lead to these changes.

Fig. 1. Rainfall anomalies and agricultural productivity. (A) The impact of rainfall anomalies on agricultural productivity (measured by NPP) and plots the
coefficients on wet anomalies and dry anomalies for separate regressions. All models include country-specific time trends, grid cell fixed effects (except for the
orange dot), and year fixed effects (except for the blue dot). Error bars represent 95% confidence intervals. An extended table of results is provided in SI
Appendix, Table S2. (B) The results of a simulation where average change in NPP due to rainfall anomalies is converted into net kilocalories gained/loss in each
grid cell from the years 2001 to 2013.
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We perform three additional tests for supportive evidence.
First, we test a two-stage model which directly measures the
impact of rainfall anomaly-induced agricultural productivity
changes on cropland expansion. These results corroborate the
reduced-form estimates of the main analysis. Next, we change
the dependent variable in the main model and examine the re-
lationship between repeated rainfall anomalies and de-
forestation, instead of cropland expansion in the same sample of
grid cells and years. Since cropland often expands into forested
areas or pastureland, we would expect to see a corresponding
reduction in forest cover in regions which experience cropland
expansion (13–19). Finally, we examine if regions where agri-
cultural productivity is buffered from the impact of rainfall
anomalies by irrigation infrastructure see changes in cropland
expansion. This is a further test that the mechanism leading to
expanded cropland is indeed rainfall-induced changes in
agricultural productivity.

Results
Impact of Rainfall Anomalies on Productivity and Cropland Expansion.
A number of multivariate statistical models are estimated to
tease out the effect of rainfall variability on global cropland ex-
pansion and agricultural productivity. Here we discuss results
using the preferred model, while additional results are supplied
in SI Appendix.
Using a satellite-based estimate of agricultural yields—net

primary production (NPP), which is a common unit of pro-
ductivity across different crop types (Materials and Methods)—on
cropland-designated areas from the European Space Agency
(ESA) satellite database, we estimate the nonlinear impact of dry
anomalies and wet anomalies on changes in agricultural pro-
ductivity. Since weather variables tend to be correlated over time
in the same location, we also control for a quadratic function of
temperature to account for the well-established response of
yields and the overall economy to temperature increases (34–36).
Across models, we control for unobserved time-invariant het-
erogeneity at the grid cell level using grid cell fixed effects to
capture soil type, socioeconomic characteristics, and other geo-
graphical characteristics that affect yield growth as well as year
fixed effects to capture year-specific anomalies that are common
to all grid cells to account for common contemporaneous trends,
like global price changes and economic growth. In addition, we
control for country-specific trends to capture variation in socio-
economic indicators and policies across countries. The rich set of
controls helps to isolate the unexpected deviations in rainfall
facilitating causal inference (Materials and Methods).
Fig. 1A confirms that rainfall anomalies lead to contempora-

neous changes to agricultural production shocks and quantifies
the magnitude of the impact globally. On average, productivity
increases in response to wet anomalies and decreases with dry
anomalies. Dry anomalies lead to an 11 to 12% decrease in ag-
ricultural productivity per year globally. Wet anomalies, on the
other hand, increase crop productivity by ∼8 to 9%. These re-
sults hold across a variety of alternative model specifications that
control for temperature exposure (Fig. 1A, purple dot) as well as
population (Fig. 1A, green dot), replacing grid cell fixed effects
with country fixed effects (Fig. 1A, orange dot) and
eliminating year fixed effects (Fig. 1A, blue dot). These results
are also robust to alternative thresholds used to identify
cropland-designated areas in the ESA data (SI Appendix, Fig. S1)
as well as an alternative measure of a rainfall anomaly that uses
the standardized precipitation index (SI Appendix, Fig. S2). The
findings are consistent with prior literature that finds adverse
effects of rainfall shortfalls on yields both globally (3) and re-
gionally (7, 8, 10).
Such rainfall-induced changes in agricultural production have

perceptible implications for global and local food security.
Converting the magnitudes of loss and gain in NPP into

kilocalories for human consumption (10, 34), we find that dry
anomalies amount to an average annual reduction of 82.7 trillion
kilocalories between 2001 and 2013, assuming a 2,000 kcals per
day, per person consumption or 730,000 kcals per person, per
year. After accounting for losses of solar energy due to trans-
portation, processing and crop residue (37), a rough conversion
of 1 gC/m2/y of NPP into 1 kcal for human consumption is used
to arrive at these estimates (10).
Over the same time period, wet anomalies generate an aver-

age annual gain of 47.5 trillion kilocalories. Thus, on net, there is
an average loss of 35.3 trillion kilocalories per year—enough to
feed 48 million people every day (Fig. 1B). Fig. 1B shows that
these losses (in shades of orange and red) are unevenly
distributed around the globe.
Next, we examine the impact of rainfall anomalies on changes

in cropland. Similar to the above analysis on agricultural pro-
ductivity, a global satellite measure of land use from the ESA is
used (Materials and Methods). The regression specification is
similar, with one difference. Expanding cropland, particularly
when it requires spreading onto virgin fields or into forested
areas, can require a large, upfront fixed cost. For this reason, we
expect that contemporaneous impacts of variable rainfall will
likely be muted, but repeated anomalies over the medium term
could induce expansion as an adaptation strategy. We therefore
measure the number of years in the past decade for which there
was a dry anomaly or wet anomaly. We then estimate the impact
of the lagged count of dry anomalies and wet anomalies on
cropland expansion, after controlling for all possible confounders
previously used in the agricultural productivity regressions. The
distributions of these dry anomalies and wet anomalies are fairly
similar, with more than half of the observations receiving zero or
one dry anomaly and wet anomaly event in the previous 10 y and
less than 4% of observations receiving 5 or more (SI Appendix,
Table S1).
Main results of our cropland analysis are shown in Table 1.

Rainfall variability is found to have a significant, but heteroge-
neous, effect on cropland expansion. For each year within the
past 10 y which experienced a dry anomaly, cropland expanded
by ∼0.02% on average across the globe and 0.03% in developing
countries (defined as low-income and middle- income countries
according to the World Bank; SI Appendix, Table S3). Although
these increases in cropland appear to be quite minor, the mean
increase in cropland over the sample period is 0.44% globally
and 0.50% in developing countries. The average grid cell expe-
rienced 1.4 dry anomalies over the past 10 y, implying that dry
anomalies account for ∼7.4% of global cropland expansion on
average. In developing countries, dry anomalies account for
∼9.0% of total cropland expansion on average.
On the other hand, there is no discernible impact of dry

anomalies on cropland expansion in high-income countries. This
could reflect the fact that wealthier farmers have access to
greater irrigation resources and savings, and if incomes are
buffered against stochastic rainfall anomalies, there is little
reason to alter behavior. Repeated wet anomalies do not show a
robust impact on cropland expansion (Table 1); the coefficient
estimates are small and not statistically significant (P > 0.10).
Since wet anomalies are associated with higher agricultural
productivity (Fig. 1A), the results suggest that the response of
farmers in developing countries is asymmetric, with a greater
sensitivity to cumulative and persistent declines in agriculture
productivity than cumulative increases in agricultural productivity.
These results remain robust to a host of changes in data and

model specifications. They are robust to two alternative cropland
datasets derived from moderate resolution imaging spectror-
adiometer (MODIS) (MCD12Q1) that follows the International
Geosphere-Biosphere Program (IGBP) classification and the
University of Maryland (UMD) classification scheme as pro-
vided in ref. 38 (SI Appendix, Table S4). In developing countries,
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dry anomalies account for ∼21.5 to 15.9% of total cropland ex-
pansion, on average, depending on the classification used (SI
Appendix, Table S4) which is approximately double the impact
found with the ESA cropland data. Although the impact ranges
between 9.0 and 21.5% across various cropland datasets due to
differences in the temporal extent of the datasets and the varying
methods used to classify cropland, results across all cropland
datasets show a consistent impact of dry anomalies in expanding
cropland. The results are also robust to using an alternative
weather dataset from the Climatic Research Unit (SI Appendix,
Table S5), using the standardized precipitation index in place of
the main rainfall anomaly measure (SI Appendix, Table S6),
calculating changes in cropland over different time periods (SI
Appendix, Table S7), and using rainfall anomalies over the
growing season in sub-Saharan Africa where we are able to ex-
plicitly identify the growing season for each grid cell (SI Ap-
pendix, Table S8). SI Appendix, Table S9, examines the sensitivity
of the main results to explicit controls for economic factors such
as distance to market that are otherwise subsumed in the grid cell
fixed effects in the main model. Distance to market is proxied by
estimated travel time to the nearest city for each grid cell in our
analysis using data from ref. 39. SI Appendix, Table S10, tests for
differential results in locations that are more likely to be domi-
nated by large agricultural producers by identifying grid cells
where soy and palm oil production are dominant—commodities
that are known to be farmed at commercial scales (40). Point
estimates in both SI Appendix, Tables S9 and S10, show that dry
anomalies continue to remain a significant predictor of cropland
expansion after controlling for market access and where the
dominance of commercial agriculture measured by soy and palm
oil is limited. This suggests that the behaviors identified here are
prominent among the smaller farms in developing countries.
Overall, consistent and robust results are obtained for dry

anomalies. These anomalies reduce yields unambiguously. In de-
veloping countries, in particular, they lead to a compensating ex-
pansion of cropland area, with a quantitative impact that is large
relative to current rates of cropland expansion. Taken together, these
results are consistent with a safety-first response (41, 42) by poor
farmers who seek to achieve a certain target level of income or output.

Estimating a Two-Stage Relationship between Rainfall Anomalies,
Agricultural Productivity, and Cropland Expansion. In the prior
analysis we demonstrate that rainfall anomalies significantly
impact agricultural productivity, as well as cropland expansion.
Here we test directly how rainfall anomaly-induced changes in
agricultural productivity impact cropland expansion. Empirically,
there are statistical complications with testing the direct impact
of changes in agricultural productivity on changes in cropland
expansion. It is unclear a priori if it is changes in agricultural

productivity which cause subsequent changes in cropland
extensification or if larger-scale farmers are simply more pro-
ductive. Thus, a simple statistical association between agricul-
tural productivity and cropland expansion using ordinary least
squares (OLS) could lead to a potentially biased regression es-
timate. This is seen in Table 2, column 2, where more productive
agriculture is correlated with expanding cropland. To correct for
this problem, a two-stage instrumental variable approach (2SLS)
is used in column 3 that uses rainfall anomalies as a source of
exogenous productivity variation to predict agricultural pro-
ductivity. This has the dual benefit of both correcting for the
endogeneity bias discussed above, as well as directly testing the
specific impact of rainfall anomaly-induced variation in NPP on
cropland expansion. Results show that upon this correction,
rainfall anomaly-induced crop productivity declines do not cause
a contemporaneous change in cropland expansion but induce
expansions in cropland 1, 2, and 3 y later. The delayed effects of
rainfall anomalies are consistent with our main results where we
find that productivity-reducing dry rainfall anomalies, summed
over a 10-y period, lead to cropland expansion. Overall, the two-
stage results provide further supporting evidence that farmers in
developing countries respond to declining yields by expanding
cropland.

Is There a Similar Relationship between Rainfall Anomalies and
Deforestation? To ascertain if we observe a similar relationship
between rainfall anomalies and deforestation as with cropland,
we replace the model of cropland changes with a model of forest
cover changes. In Table 1, column 5, we estimate a model that
explains how rainfall variability impacts changes in forest cover
in each grid cell. For each year within the past 10 y which ex-
perienced a dry anomaly, forested areas decreased by ∼0.1% on
average in developing countries, a large effect compared to the
sample mean of 0.9%. Overall, dry anomalies therefore account
for 15% of total forest reduction on average. While this result
does not determine the pathways through which dry anomalies
induce forest cover loss, the similarity of estimated magnitudes
provides further corroborating evidence of the prominent role
that agricultural expansion plays in driving deforestation in the
developing world but also the important role of rainfall vari-
ability in governing land use changes.
As a further check, to confirm more directly the link between

the two, we also estimate a naïve model which relates changes in
cropland to changes in deforestation (SI Appendix, Table S11).
Across all model specifications, changes in cropland strongly
predict contemporaneous changes in deforestation, with a 10%
increase in cropland in a grid cell corresponding to a 0.7 to 1.0%
reduction in forest cover. The contemporaneous response sug-
gests that planted areas move directly into existing forest

Table 1. Impact of rainfall anomalies on cropland expansion

Dependent variable

Cropland area Forest area

Full sample High income Developing Developing

No. wet anomalies 0.000092 0.000109 0.000079 0.000810+

(0.000) (0.000) (0.000) (0.000)
No. dry anomalies 0.000233* 0.000126 0.000321* −0.001101**

(0.000) (0.000) (0.000) (0.000)
N 1,022,457 295,545 704,664 704,664
R-sq 0.332 0.297 0.338 0.321

Dependent variable in columns 2 to 4 is the 5-y average annual change in log cropland area in a grid cell, while in column 5 it is the 5-y
average annual change in log forest area in a grid cell. All regression models include grid cell fixed effects; year fixed effects; country-
specific trends; and controls for contemporaneous precipitation, temperature, and population. No. wet anomalies (dry anomalies) denotes
number of wet (dry) anomalies in 10 y indicating the number of years, of the prior 10 y, for which annual precipitation in the grid cell was at
least 1 SD higher (lower) than the long-run mean of the grid cell. SEs are clustered at the province–year level. Statistical significance is given
by +P < 0.10, *P < 0.05, **P < 0.01, and ***P < 0.001.
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frontiers. Planted areas can also expand into existing pasture
lands, pushing pastures into forested areas. In this scenario,
additional time might be needed to displace cattle to forest
frontiers, thus delaying the impact of cropland expansion on
forested areas (43). Even though the dynamic interaction between
forest loss and cropland expansion can certainly vary by location,
the results still suggest that rainfall variability remains a key var-
iable in understanding deforestation–agriculture trade-offs.

Can Investments Which Buffer Agricultural Productivity against
Rainfall Anomalies Also Buffer against Cropland Expansion? In this
section, we test for further corroborative evidence that the re-
lationship between repeated dry anomalies and cropland ex-
pansion is driven by impacts on agricultural productivity. We first
show that agricultural productivity is not sensitive to rainfall
variability in the command area of large irrigation dams. We
then test if cropland expansion due to dry rainfall anomalies
ceases to occur in these regions. We isolate grid cells which fall
within the command area of each irrigation dam (SI Appendix,
Fig. S3) in the Global Reservoir and Dam (GRanD) v1database
—defined as potential recipients of irrigation services (refs. 44
and 45 and SI Appendix, Fig. S4)—and empirically establish the
spatial threshold over which the largest agricultural benefits ac-
crue (25 to 50 km downstream) (Materials and Methods).
To examine if access to irrigation infrastructure can mitigate

the impact of rainfall anomalies on agricultural productivity, we
use a similar empirical strategy as in the main analysis but also
include the number of upstream irrigation infrastructure facili-
ties in the regression equation, as well as interaction terms be-
tween the number of upstream irrigation facilities and the
rainfall anomaly variables.
We apply a two-stage instrumental variables approach (2SLS)

when estimating the impact of irrigation infrastructure to address
biases that arise due to the nonrandom placement of in-
frastructure (Materials and Methods). Estimates of the influence
of upstream dams on crop productivity are shown in Table 3.
OLS results that do not correct for placement bias are reported
in SI Appendix, Table S12. The 2SLS regression estimates show

that the direct impact of dams is significant (P < 0.05), suggesting
that dams boost productivity. These regressions pass diagnostic
tests for instrument relevance (Kleibergen–Papp LM test) and
the test for weak instruments (Kleibergen–Papp Wald test)
providing supporting evidence about the validity of our in-
strumental variables. Additionally, results show that an addi-
tional upstream dam increases NPP growth by 7%. Having access
to an upstream dam also buffers the adverse effects of a dry
anomaly (that is, the coefficients on the interaction term of dry
anomaly and upstream dams and the coefficient of the dry anomaly
variable are of opposite sign). Upstream dams also decrease the
sensitivity of NPP to wet anomalies. These results show that with
irrigation infrastructure, the loss in productivity is dampened. If true,
this ought to limit the safety-first response of cropland expansion
seen in developing regions that are impacted by dry anomalies.
To test if this is the case, a similar specification is used for the

cropland analysis. To facilitate interpretation, the variables in-
dicating precipitation anomalies are transformed into binary
variables. Given the distribution of anomalies, we show results
for 2+, 3+, and 4+ y of anomalies, out of the last 10 y. Only
around 3% of observations experience five or more wet anom-
alies or dry anomalies (SI Appendix, Table S1), making statistical
inference noisy beyond 4+ y. Results are displayed in columns 3
to 5 of Table 3. Column 3 focuses on impacts due to 2+ rainfall
anomalies in the last 10 y, column 4 focuses on 3+ rainfall
anomalies, and column 5 indicates 4+ rainfall anomalies. The
coefficient on the interaction between multiple dry anomalies
and upstream irrigation facilities is negative and significant in all
three 2SLS models. This implies that when irrigation reduces
sensitivity to rainfall anomalies, farmers no longer respond to
multiple years of dry anomalies by expanding cropland. Across
all 2SLS models, the impact of multiple wet anomalies, as well as
the interaction between upstream dams and wet anomalies,
remains largely insignificant.
Collectively, these results show that when farmers are equip-

ped with productivity-enhancing irrigation infrastructure that
buffers against rainfall-induced anomalies, incentives to expand
cropland in the face of repeated dry anomalies disappear.
We caution that these results do not comment on the net

benefits of dam construction or irrigation infrastructure. Here
we are examining only the command areas of large dams with
relatively greater storage capacity. Regions that are in the con-
trol area of dams or farther downstream are excluded and have
been shown in other studies to be adversely affected by dams (10,
46, 47). Nevertheless, the results demonstrate that when agri-
cultural productivity is no longer sensitive to rainfall anomalies,
cropland expansion ceases to occur in response to rainfall
anomalies.

Discussion
The global competition for agricultural land and forest resources
remains central to policy discussions striving for a food-secure
and low-carbon future and seeking to balance development and
environmental goals. However, the relationship between agri-
cultural productivity, cropland expansion, and deforestation
continues to remain a subject of debate. The results in this paper
make a narrow yet important contribution to this debate, by
examining specifically how rainfall-induced changes in pro-
ductivity impact the dynamics of cropland expansion. We first
show, independently, how exogenous rainfall anomalies impact
both changes in agricultural productivity, as well as cropland
expansion. The results suggest that the response of farmers in
developing countries is asymmetric, with a greater sensitivity to
cumulative and persistent declines in agriculture productivity
than cumulative increases in agricultural productivity through a
compensating expansion of cropland area. We then conduct a
two-stage analysis which directly links these rainfall-induced
fluctuations in agricultural productivity to cropland expansion.

Table 2. Impact of rainfall shock-induced NPP changes on
cropland expansion, two-stage least squares estimation

Cropland area OLS 2SLS

log(NPP), t 0.000694** 0.001062
(0.000227) (0.001092)

log(NPP), t-1 0.000383+ −0.002956***
(0.000210) (0.000888)

log(NPP), t-2 0.000347+ −0.003722***
(0.000178) (0.001026)

log(NPP), t-3 0.000000 −0.002993**
(0.000120) (0.001115)

N 54,956 54,934
Kleibergen–Papp LM-stat 1,509.62
Kleibergen–Papp LM P value 0.0000
Kleibergen–Papp F-stat 183.56

Dependent variable is log cropland area in each grid cell. All regression
models include controls for year fixed effects, country–year trends, popula-
tion temperature and precipitation. Column 2 also controls for grid cell fixed
effects, and column 3 controls for country fixed effects as well as distance to
the nearest city, CTI, and terrain roughness. Robust clustered SEs are in
parentheses. In the first stage regressions, indicator variables for a wet
and dry rainfall anomaly are included as instruments, in the same year as
NPP. The regressions pass diagnostic tests for instrument relevance
(Kleibergen–Papp LM test) and the test for weak instruments (Kleibergen–
Papp Wald test) providing supporting evidence about the validity of the
instrumental variables. Statistical significance is given by +P < 0.10, *P <
0.05, **P < 0.01, and ***P < 0.001.
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These results again and more directly demonstrate that repeated
dry anomalies cause an increase in cropland expansion due to
reduced yields. They also rule out other possible mechanisms
that may also be induced by dry anomalies, such as forest fires or
tree mortality.
The findings of this paper are consistent with that of the

subsistence hypothesis (29) which hypothesizes that as farms
become more productive, small-holder farmers who are
attempting to achieve a subsistence level of production will re-
quire less agricultural land. However, it is the inverse result that
is found—i.e., that when rainfall anomalies reduce productivity
of land, farmers respond by increasing their use of cropland.
These results have important policy implications. We estimate

that 9% of cropland expansion in the developing world can be
attributable to rainfall-induced productivity anomalies. This is
already a nontrivial amount, and given expectations that climate
change will generate additional rainfall variability, we should
expect this trend to increase. Thus, without policy action, there is
a likelihood of a vicious cycle where rainfall variability induces
expansion of cropland into forests, removing important carbon
sinks, exacerbating climate change impacts, and inducing further
rainfall variability.
The first and foremost risk that a small-holder farmer may

face is that they will fail to achieve a subsistence level of income
due to uncertain production driven by rainfall anomalies. As
demonstrated, investments in irrigation infrastructure are one
way to diminish the impact of rainfall anomalies that is felt by
farmers and reduce their need to react to rainfall anomalies. In
fact, previous research has shown that farmers increase their own
private irrigation investments in response to dry rainfall anom-
alies (11). By eliminating the risk of rainfall anomalies, farmers
are more likely to find themselves in a different paradigm guided

by expected utility theory, where risk is reduced by reducing
exposure to rainfall anomalies which can be achieved through
cultivating less land.
Our analysis has several caveats. When estimating the impact

of rainfall variability, we focus on one specific type of variability:
variation from year to year. Previous research (7) shows that
intraseasonal rainfall variability can have an even larger impact
on crop yields. Estimating the impact of intraseasonal variability
is relatively straightforward when dealing with a small geographic
area, where growing seasons are homogenous or well known. At
the global level, however, measuring this impact is much more
difficult as it would require very detailed knowledge on crop
choices (which will be endogenously determined with respect to
rainfall variation, adding an additional layer of complexity) and
assumptions about cropping seasons. Because we examine an-
nual variation, rather than growing season variation, it is likely
that we are underestimating the true impact of increased rainfall
variability during the growing season. While our results demon-
strate the ability of large irrigation infrastructure to mitigate the
impact of rainfall anomalies across both margins, other policies
may also be equally as effective. Policies which reduce the ex-
posure of a farmer’s income to rainfall variability, such as safety
nets, weather-based crop insurance, or incentives to grow more
weather-resilient crops, can also change a farmer’s calculus when
deciding how to respond to anomalies.

Conclusion
In sum, results in this paper document a robust global impact of
rainfall anomalies on agricultural production across both the
extensive and intensive margins. As global climate change is
expected to increase rainfall variability in the future (2, 48), our
results demonstrate that the production of agriculture is likely to

Table 3. Impact of irrigation infrastructure on agricultural productivity and cropland expansion

Agricultural Productivity

Cropland Area

X = 2 X = 3 X = 4

No. upstream dams 0.0743* 0.037420* 0.038960*** 0.028461***
(0.031) (0.015) (0.007) (0.005)

Wet anomaly 0.1886***
(0.022)

Wet anomaly × no. upstream dams −1.0743***
(0.220)

X + wet anomalies 0.000123 0.000528 0.001135*
(0.000) (0.000) (0.000)

X + wet anomalies × no. upstream dams 0.001480 −0.010607 −0.013812
(0.013) (0.013) (0.021)

Dry anomaly −0.1338***
(0.009)

Dry anomaly × no. upstream dams 0.1905**
(0.070)

X + dry anomalies 0.001124** 0.002153*** 0.001796***
(0.000) (0.000) (0.000)

X + dry anomalies × no. upstream dams −0.023459+ −0.04423*** −0.018970**
(0.014) (0.007) (0.006)

N 63,154 703,512 703,512 703,512
Kleibergen–Papp LM-stat 107.6 123.471 180.597 141.091
Kleibergen–Papp LM P value 0.000 0.0000 0.0000 0.0000
Kleibergen–Papp F-stat 25.32 30.491 44.888 35.107

Dependent variable in column 2 is the change in log NPP in a grid cell. Dependent variable in columns 3 to 5 is the 5-y average annual change in log
cropland area in a grid cell. All regression models include controls for year and country fixed effects as well as temperature, population, country–year trends,
terrain roughness, aquifer presence, and CTI. Columns 3 to 5 also control for annual precipitation. X + wet (dry) rainfall anomalies is a time-varying dummy
variable indicating if rainfall was at least 1 SD higher (lower) than the long-run mean of the grid cell for X or more years out of the prior 10 y, where X is given
in the second row. Upstream dams is a count variable which indicates the number of upstream dams from the grid cell. Statistical significance is given by +P <
0.10, *P < 0.05, **P < 0.01, and ***P < 0.001. Robust clustered SEs are in parentheses. The regressions pass diagnostic tests for instrument relevance
(Kleibergen–Papp LM test) and the test for weak instruments (Kleibergen–Papp Wald test) providing supporting evidence about the validity of the in-
strumental variables. Additional details are provided in Materials and Methods and SI Appendix.
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become riskier. Our results provide a plausibly causal reaction to
this risk in developing countries in the form of an expansion of
cropland. On average, dry anomalies account for ∼7.4% of
global cropland expansion and 9% of cropland expansion in the
developing world.
Although global policies have been trending toward forest

conservation to limit greenhouse gases and conserve biodiversity,
these economic forces have the potential to counteract some of
the effects of these policies.

Materials and Methods
In order to estimate the impact of rainfall anomalies on extensive and in-
tensive agriculture, a global, gridded dataset was created, with grid cells 0.5°
× 0.5° in size. Several global rasters were extracted to these grid cells at an
annual basis. For estimates in changes in cropland we use a new land cover
dataset developed by the ESA’s Climate Change Initiative that provides
consistent information on 37 land cover classes based on the United Nations
Land Cover Classification System for a period of 24 y from 1992 to 2015 at a
300-m resolution. The data rely on state-of-the-art reprocessing of four
different satellite missions [Medium Resolution Imaging Spectrometer
(MERIS), Satellite Pour l’Observation de la Terre- Vegetation (SPOT-VGT),
Advanced Very High Resolution Radiometer (AVHRR), and Project for On-
Board Autonomy, with the V standing for Vegetation (PROBA-V)]. We use a
cross-walking table from ref. 49 that characterizes plant functional types
across the ESA classes to guide the grouping of classes into a single cropland
category and forest category. The categories are then aggregated to the
0.5° grid by calculating the percent of cropland or forest in each 0.5° grid. In
SI Appendix, we also show results using the latest version of the time-varying
MODIS dataset called MCD12Q1 that follows the IGBP legend descriptions as
well as the UMD classification scheme as provided in ref. 38. The most recent
version of the MODIS Land Cover Type product is Collection 5.1, which in-
cludes adjustments for significant errors that were detected in Collection 5
of the MCD12Q1 product. SI Appendix, Table S13, lists the land use classes
from the different datasets that were used in classifying pixels as cropland.
Like with ESA, the cropland pixels are then aggregated to the 0.5° grid by
calculating the percent of cropland in each 0.5° grid.

Data on rainfall and temperature are from Willmott and Matsuura (50).
This dataset contains monthly observations in a 0.5° grid for the entire world
from 1900 to 2014. Using these data, we calculate locally defined annual
rainfall z scores. We then define dry anomalies as years when the z score is
less than −1 and wet anomalies as years when the z score is greater than 1.
Put another way, dry (wet) anomalies indicate years when rainfall is at least
1 SD below (above) the long-run mean for that grid cell. In SI Appendix, we
show that results using anomalies defined only over the local growing
season are similar in magnitude and direction, though are statistically noisier
(SI Appendix, Table S8), compared to the global results that rely on anom-
alies over the entire year, using data from sub-Saharan Africa, where high-
quality data on growing seasons are available from HarvestChoice (https://
www.ifpri.org/project/harvestchoice).

In order to measure changes in agricultural productivity at a global grid-
level scale, we exploit a satellite- based estimate of NPP as a proxy following
the past literature in economics (10, 51) and remote sensing (52–54) since it
facilitates aggregation and provides a common unit of productivity across
different crop types (55). NPP is linearly related to the amount of solar en-
ergy that plants absorb over a growing season (56) and is measured in grams
of carbon per square meter. We use the annual MOD17A3 measures from
2000 to 2013 generated by the Numerical Terradynamic Simulation Group at
the University of Montana (57) which corrects for cloud contamination
prevalent in MODIS land products. Since our interest is in estimating NPP
from cropland, we use the ESA land cover dataset described earlier to
identify cropland pixels where cropland makes up more than half of the
share of the total land area (55%). We also use other thresholds of cropland
coverage (35, 45, 65, and 75%) in robustness checks in SI Appendix. Our final
data measure changes in NPP for each 0.5° grid cell that contained cropland
in the year 2000. We use a time-invariant crop area map from the beginning
of our sample period in order to isolate and identify changes in productivity
(intensive margin) separately from changes in cropland (extensive margin).

We complement our dataset with additional grid cell characteristics. Our
equations control for population in a grid cell. The population data comes
from Gridded Population of the World (GPWv3) (58). GPW offers population
data at the 0.5° grid cell level for the entire globe, at 5-y intervals between
1990 and 2015. The data are linearly interpolated when annual observations
are required as with the NPP analysis. The main result remains consistent
without the inclusion of population as a control variable as well as with

using a newer version of GPW data, namely, GPWv4, that is also available at
5-y intervals but with a shorter time frame starting from the year 2000 (SI
Appendix, Table S14). This provides further supporting evidence that the
type of population data used is not driving the results.

In certain specifications, we also control for the physical geography of the
grid cell that may affect the sensitivity to rainfall anomalies. The first measure
we use is a grid cell’s wetness index, the compound topographic index (CTI)
derived from HYDRO1k; it is time-invariant, correlates with soil moisture,
and is a function of the slope and the upstream area contributing to a river’s
flow. Additionally, we also control for other time-invariant factors like ter-
rain roughness by using the SD of elevation in a grid cell and presence of an
underlying unconsolidated aquifer.

To provide further support and evidence that the nonlinear effects
identified by wet and dry anomalies separately is most appropriate for our
analysis, in SI Appendix we create a variable called net anomaly which is the
difference between the number of positive anomalies and negative anom-
alies over the last decade. Specifically, it is (number of annual positive
anomalies) − (number of annual negative anomalies). Therefore, if on bal-
ance the grid cell experiences more positive anomalies than negative
anomalies in the past 10 y, this difference is positive. When we include such
a linear term, the coefficient is negative, implying that as the number of
positive anomalies increase, cropland expansion diminishes (SI Appendix,
Table S15). However, this point estimate is noisy and not statistically sig-
nificant. Finally, we use World Bank Income group classifications to identify
high-income countries and developing countries. Classifications are based on
mean per-capita gross national income (GNI) in 2015 where developing
countries have GNI per capita between $1,025 and $12,475 (encompassing
low income, lower–middle income, and upper–middle income), and high-
income countries are above $12,475. SI Appendix, Table S16, presents sum-
mary statistics of the main variables.

To estimate the impact of rainfall anomalies on cropland extensification
and forest cover changes, we employ panel regression analysis. Our strategy
relies on the fact that short-run deviations from long-run precipitation are
exogenous. We expect that contemporaneous impacts of variable rainfall
will likely be muted, but repeated anomalies over the medium term could
induce extensification as an adaptation strategy. We therefore calculate for
each grid cell the number of years in the past 10 y for which precipitation
was at least 1 SD above or below the mean. We chose 10 y as the cutoff as it
is a long enough time period to exploit significant variation in the in-
dependent variable and for impacts on the extensive margin to materialize.
We also include a host of controls as well as unobserved characteristics using
cell or country fixed effects, year fixed effects, and a country–trend in-
teraction which neutralizes any country-level trends. Formally, we estimate
the following equation:

Δ log(Cropit) = α1 + α2Prec10
−
it + α3Prec10

+
it + +Xit ’λ + fc(t) + θt + γi + «it ,

[1]

where Δ log(Cropit) is the percent change in cropland over the past 5 y in
grid cell i in year t1, Prec10−it (Prec10+it ) is the number of dry (wet) rainfall
anomalies greater than 1 SD within the last 10 y, fc(t) are country-specific
time trends, θt are year fixed effects, and γi are grid cell fixed effects. We
choose 5 y to smooth out any contemporaneous or idiosyncratic factors that
may impact changes in cropland over any given year. Xit is a vector of control
variables which includes log of population, contemporaneous mean annual
temperature (°C), and contemporaneous precipitation (mm/y). This is be-
cause sowing decisions could be informed by information about current year
rainfall. α2 and α3 are our coefficients of interest and measure how repeated
dry anomalies or wet anomalies, respectively, can impact the percentage
change in cropland. The impact on forest cover change is similarly estimated.
In our baseline results we cluster SEs at the province–year level.

To estimate the contemporaneous impact of rainfall anomalies on in-
tensification, we estimate a similar equation:

Δ log(NPPit) = α1 + α2Prec−it + α3Prec+it + +Xit ’λ + fc(t) + θt + γi + «it , [2]

where NPPit is net primary productivity in grid cell i in year t, Prec−it (Prec+it ) is a
binary variable which indicates if there was a dry (wet) rainfall anomaly in
grid cell i and year t, θt are year fixed effects, γi are grid cell fixed effects, and
fc(t) are country-specific time trends. Finally, Xit is a vector of control vari-
ables, including log of population, and a quadratic term for mean annual
temperature (°C). α2 and α3 are our coefficients of interest and measure how
a dry anomaly or wet anomaly, respectively, can contemporaneously impact
the percentage change in NPP. In our baseline results we cluster SEs at the
province–year level.
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To estimate the impact of large dams, we use an instrumental variables
approach to correct for placement bias. The GRanD v1 dataset, from the
Socioeconomic Data and Applications Center (SEDAC), is used to identify the
location of large irrigations dams (refs. 44 and 45 and SI Appendix, Fig. S4). In
SI Appendix we give a detailed explanation of how grid cells were mapped
to dam command areas. Dams are more likely to be built in areas where they
will have the largest impact on agricultural productivity. Moreover, place-
ment can also be influenced by unobservable factors such as politics. Analysis
that does not correct for these inherent placement biases is likely to lead to
biased estimates that are not causally interpretable. To derive causally in-
terpretable estimates that account for these biases, we exploit geographical
variation in the suitability for dam construction closely following past liter-
ature (46, 10). By focusing solely on the impacts of variation in dam place-
ment resulting from geographic factors such as the gentleness of a river
slope, we can isolate other determinants of placement that could also affect
the outcomes of interest and cause bias. In this way, we choose instruments
that can predict the suitability for irrigation dam construction. For instance,
rivers with gentle but nonzero slopes are required to create long reservoirs
for capturing water, and constructing canals will allow the water to reach
the irrigated fields via gravity. In sum, we include three instrumental vari-
ables: the length of all rivers within a 25 to 50 km buffer around the centroid
of each grid cell (i.e., the same region where we calculate the presence of
dams), the share of these rivers which have a slope that is suitable for irri-
gation dams, and a country’s historic propensity for dam construction. We
first predict dam construction using the instruments and find evidence for
the importance of a gentle river gradient and river length in increasing dam
construction (SI Appendix, Table S17). In the second stage, we use fitted
values of dams in place of the observed values to correct for the bias. The
methods and instruments are elaborated upon in SI Appendix.

To identify soy and palm oil-dominated grid cells we use data on the
geographical distribution of agricultural crops from ref. 59. They provide a 5
arc min × 5 arc min raster dataset encompassing 137 crops. For each cell in
the raster, we report harvested area in hectares. We aggregate the har-
vested area variable at the lower resolution of our dataset, i.e., 0.5° × 0.5°.
We then rank all crops in each grid cell and identify the crop that occupies
the largest amount of harvested area in the grid cell. We then identify grid
cells whose main crop is either soy or palm oil. Distance to market is mea-
sured using estimated travel time to the nearest city for each grid cell in
our analysis using data from ref. 39 which provides a global raster of travel
times to the nearest city of 50,000 people or more, for the year 2000. We
calculate the mean value for each grid cell and include this variable in our
regression.

All data used in this analysis are publicly available from the ESA (https://
www.esa-landcover-cci.org/) and the Numerical Terradynamic Simula-
tion Group (https://www.ntsg.umt.edu/project/modis/default.php). Observed
temperature and precipitation data are available from http://climate.geog.
udel.edu/∼climate/.
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